Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Hayer, Juliette (Ed.)Staphylococcus aureus causes both hospital- and community-acquired infections in humans worldwide. Due to the high incidence of infection, S. aureus is also one of the most sampled and sequenced pathogens today, providing an outstanding resource to understand variation at the bacterial subspecies level. We processed and downsampled 83,383 public S. aureus Illumina whole-genome shotgun sequences and 1,263 complete genomes to produce 7,954 representative substrains. Pairwise comparison of average nucleotide identity revealed a natural boundary of 99.5% that could be used to define 145 distinct strains within the species. We found that intermediate frequency genes in the pangenome (present in 10%–95% of genomes) could be divided into those closely linked to strain background (“strain-concentrated”) and those highly variable within strains (“strain-diffuse”). Non-core genes had different patterns of chromosome location. Notably, strain-diffuse genes were associated with prophages; strain-concentrated genes were associated with the vSaβ genome island and rare genes (<10% frequency) concentrated near the origin of replication. Antibiotic resistance genes were enriched in the strain-diffuse class, while virulence genes were distributed between strain-diffuse, strain-concentrated, core, and rare classes. This study shows how different patterns of gene movement help create strains as distinct subspecies entities and provide insight into the diverse histories of important S. aureus functions.more » « less
- 
            Abstract Bacterial genomes exhibit widespread horizontal gene transfer, resulting in highly variable genome content that complicates the inference of genetic interactions. In this study, we develop a method for detecting coevolving genes from large datasets of bacterial genomes based on pairwise comparisons of closely related individuals, analogous to a pedigree study in eukaryotic populations. We apply our method to pairs of genes from theStaphylococcus aureusaccessory genome of over 75,000 annotated gene families using a database of over 40,000 whole genomes. We find many pairs of genes that appear to be gained or lost in a coordinated manner, as well as pairs where the gain of one gene is associated with the loss of the other. These pairs form networks of rapidly coevolving genes, primarily consisting of genes involved in virulence, mechanisms of horizontal gene transfer, and antibiotic resistance, particularly the SCCmeccomplex. While we focus on gene gain and loss, our method can also detect genes that tend to acquire substitutions in tandem, or genotype-phenotype or phenotype-phenotype coevolution. Finally, we present the R package that allows for the computation of our method.more » « less
- 
            Ross-Ibarra, J (Ed.)Abstract Limited dispersal of individuals between generations results in isolation by distance, in which individuals further apart in space tend to be less related. Classic models of isolation by distance assume that dispersal distances are drawn from a thin-tailed distribution and predict that the proportion of the genome that is identical by descent between a pair of individuals should decrease exponentially with the spatial separation between them. However, in many natural populations, individuals occasionally disperse over very long distances. In this work, we use mathematical analysis and coalescent simulations to study the effect of long-range (power-law) dispersal on patterns of isolation by distance. We find that it leads to power-law decay of identity-by-descent at large distances with the same exponent as dispersal. We also find that broad power-law dispersal produces another, shallow power-law decay of identity-by-descent at short distances. These results suggest that the distribution of long-range dispersal events could be estimated from sequencing large population samples taken from a wide range of spatial scales.more » « less
- 
            The emergence of Variants of Concern (VOCs) of SARS-CoV-2 with increased transmissibility, immune evasion properties, and virulence poses a great challenge to public health. Despite unprecedented efforts to increase genomic surveillance, fundamental facts about the evolutionary origins of VOCs remain largely unknown. One major uncertainty is whether the VOCs evolved during transmission chains of many acute infections or during long-term infections within single individuals. We test the consistency of these two possible paths with the observed dynamics, focusing on the clustered emergence of the first three VOCs, Alpha, Beta, and Gamma, in late 2020, following a period of relative evolutionary stasis. We consider a range of possible fitness landscapes, in which the VOC phenotypes could be the result of single mutations, multiple mutations that each contribute additively to increasing viral fitness, or epistatic interactions among multiple mutations that do not individually increase viral fitness—a “fitness plateau”. Our results suggest that the timing and dynamics of the VOC emergence, together with the observed number of mutations in VOC lineages, are in best agreement with the VOC phenotype requiring multiple mutations and VOCs having evolved within single individuals with long-term infections.more » « less
- 
            Abstract The reduction of genetic diversity due to genetic hitchhiking is widely used to find past selective sweeps from sequencing data, but very little is known about how spatial structure affects hitchhiking. We use mathematical modeling and simulations to find the unfolded site frequency spectrum left by hitchhiking in the genomic region of a sweep in a population occupying a 1D range. For such populations, sweeps spread as Fisher waves, rather than logistically. We find that this leaves a characteristic 3-part site frequency spectrum at loci very close to the swept locus. Very low frequencies are dominated by recent mutations that occurred after the sweep and are unaffected by hitchhiking. At moderately low frequencies, there is a transition zone primarily composed of alleles that briefly “surfed” on the wave of the sweep before falling out of the wavefront, leaving a spectrum close to that expected in well-mixed populations. However, for moderate-to-high frequencies, there is a distinctive scaling regime of the site frequency spectrum produced by alleles that drifted to fixation in the wavefront and then were carried throughout the population. For loci slightly farther away from the swept locus on the genome, recombination is much more effective at restoring diversity in 1D populations than it is in well-mixed ones. We find that these signatures of space can be strong even in apparently well-mixed populations with negligible spatial genetic differentiation, suggesting that spatial structure may frequently distort the signatures of hitchhiking in natural populations.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
